RUP®/XP Guidelines:

Test-first Design and
Refactoring

Robert C. Martin
Object Mentor, Inc.

Rational Software White Paper

o2

Rational

eeeeeeeeeeeeeeeeeeeeeeee

Table of Contents

OVEI VIBWW ...ttt ettt h et b et h b bt E £ h 8 £aeeh 8228 h £ 8 £ e e R e H 2282 H £ 8 £ a8 e H e R e R 2R e AR e R e s e AR £ R e e e R e R e e e b e R et eb e e R et e R e R e e e b r s 3
A REFACLONING EXAIMPIE ...ttt et et e b e bt ae e e e e e bese e e b e e bt eaeeRe e e enbeseeebesaeebeene e e anteseenbesaeaneas 3
107010 Te 1T = o] o EOO T TSSOSO S TP TSP P S PPS 17
REFEIEINCES.....ee ettt b et b e et b e s e st e bt s e e he e R e s A e R e e R e AEeh e e Rt AR e R e e R e AR oA e e R e AR e R e R e nReRe Rt nR e e Rt s R e e b e nrenere s 17

RUP®/XP Guidelines: Test-first Design and Refactoring

Overview

It is seldom that atruly revolutionary practice surfacesin the software arena. Structured Programming was one such practice.
OO was another. Test-first Design and Refactoring is still another.

An accurate, but naive, definition of refactoring is the act of making tiny changes that preserve a program’s function but
change its structure. Embedded in this definition is the notion that there are two distinct values to software. Firgt, thereis
value in what the software does. Secondly, there is value in the structure of the software. According to the definition just
given, refactoring is atechnique for maintaining and improving the structural value of software.

A more sophisticated definition of refactoring is the technique of designing and implementing software through a myriad of
tiny changes that alternately focus on adding function and improving structure. This definition extends the meaning of the
word described by Fowler in his book Refactoring, (see reference [1]) and describes the way in which software is designed
and written in the process of eXtreme Programming (XP) (seereference [2]).

Test-first design and refactoring is the practice of designing and then improving code by writing test cases before writing the
code that makes them pass. The programmer selects a task, writes one or two very simple unit test cases that fail because the
program does not perform this task, and then modifies the program to make the tests pass. The programmer continuously adds
more test cases, and makes them pass, until the software does everything it's supposed to do. Then the programmer improves
the structure of the system one small step at atime, running al of the tests between each step to make sure nothing has been
broken.

A Refactoring Example

The best way to describe test-first design and refactoring is by example. So, here, we will undertake to design and implement
asmall program, demonstrating how refactoring is accomplished. Note that in XP a pair of programmers using the same
workstation would accomplish the activities you are about to see.*

The application we will build is asimple auto mileage log. Every time auser visits afilling station, he or she entersthe
amount of fuel purchased, the price of that fuel, and the current odometer reading of the vehicle. The system keeps track of
these items and generates certain useful reports. Our implementation language will be Java.

We start out by writing the codein Listing 1:

Test Aut oM | eagelog. j ava Listing 1

import junit.framework.*;
public class TestAutoMileageLog extends TestCase
public TestAutoMileagelLog(String name)

super(name) ;

The first thing we write is the framework for containing our unit tests. This may seem backwards, but it's fundamental to the
test-first concept. We write test code first, before we write the actual application code. Y ou will see how it works as we
proceed.

The test framework we are using is called JUnit, which is a simple unit-testing framework written by Kent Beck and Erich
Gamma. The code aboveisall that is needed to set it up.

Now we need to consider our first test case. What does this software do? Onething it hasto do is record fueling station visits.
Thisimpliesthat there must be aFuel i ngSt ati onVi si t object that holds the pertinent data. So we can write atest that
creates this object and then queriesits fields.

We begin this by writing atest function. In JUnit, atest function is any method of a class derived from Test Case whose
name begins with the four letters“t est ”. See Listing 2.

! See the Rational Software white paper titled RUP®/XP Guidelines: Pair Programming

RUP®/XP Guidelines: Test-first Design and Refactoring

Test Aut oM | eagelog. | ava Listing 2

import junit._framework.*;
public class TestAutoMileagelLog extends TestCase
public TestAutoMileagelLog(String name)

super(name);

public void testCreateFuelingStationVisit()

FuelingStationVisit v = new FuelingStationVisit(Q);

The new codeisin boldface. Notice that all we have done is create a new object named Fuel i ngSt ati onVi si t . We have
not given it any construction arguments yet. All we are interested in, at this point, is making sure that we can create the object.

Clearly, thiswill not compile (though it would be interesting if it did). To get it to compile, we have to write the code for the
Fuel i ngSt ati onVi si t object. See Listing 3.

Test Aut oM | eagelog. j ava Listing 3.1

import junit.framework.*;
import FuelingStationVisit;

public class TestAutoMileagelLog extends TestCase
public TestAutoMileagelLog(String name)

super(name);

public void testCreateFuelingStationVisit()

FuelingStationVisit v = new FuelingStationVisit();

Fuel i ngStationVisit.java Listing 3.2

public class FuelingStationVisit

e

This code compiles, and the test runs, so we are ready to add the functionality we want.

Test Aut oM | eagelog. | ava Listing 4.1

import junit._framework.*;

import FuelingStationVisit;

import java.util._Date;

public class TestAutoMileagelLog extends TestCase
public TestAutoMileagelLog(String name)

super(name);

public void testCreateFuelingStationVisit()

Date date = new Date();
double fuel = 2.0; // 2 gallons.

RUP®/XP Guidelines: Test-first Design and Refactoring

double cost = 1.87*2; // Price = $1.87 per gallon
int mileage = 1000; // odometer reading.
double delta = 0.0001; //tolerance on floating point equality.

FuelingStationVisit v =

new FuelingStationVisit(date, fuel, cost, mileage);
assertEquals(date, v.getDate());
asserteEquals(1.87*2, v.getCost(), delta);
assertEquals(2, v.getFuel(), delta);
assertEquals(1000, v.getMileage());
assertEquals(1.87, v.getPrice(), delta);

Fuel i ngStationVisit.java Listing 4.2

import java.util_.Date;
public class FuelingStationVisit

private Date itsDate;

private double itsFuel;
private double itsCost;
private int itsMileage;

public FuelingStationVisit(Date date, double fuel,
double cost, int mileage)

{
itsDate = date;
itsFuel = fuel;
itsCost = cost;

} itsMileage = mileage;

public Date getDate() {return itsDate;}

public double getFuel() {return itsFuel;}

public double getCost() {return itsCost;}

public double getPrice() {return itsCost/itsFuel;}
public int getMileage() {return itsMileage;}

This step was made by adding the teststo Test Aut oM | eagelog first, and then adding the methods to the

Fuel i ngSt ati onVi si t . There were three or four compilesinvolved before it was ready to be tested. The testsran the first
time.

Y ou might wonder what this extreme incrementalism is buying us. Couldn’t we just have written the

Fuel i ngSt ati onVi si t and then written the test code afterwards? Isit necessary to test Fuel i ngSt ati onVisit atal?
So far, writing the tests first, or even writing them at al, has given us very little benefit—except one. We know,
unambiguously, that the above code compiles and executes. We therefore know that if the next change results in compiler
errors, or test failures, that the problem was in the change, not in the previous code. This may seem to be a small benefit, but it
will become much more important later.

Next, we need to put Fuel i ngSt at i onVi si t objects somewhere. Some object needs to hold them. What object should that
be? It isthe user who wants to keep and manage this information, so we could create a User object to hold the

Fuel i ngSt ati onVi si t objects. However, the mileage field inthe Fuel i ngSt at i onVi si t object makes me wonder.
Mileage is an attribute of avehicle. The Fuel i ngSt ati onVi si t object isrecording part of the state of a Vehi cl e at the
moment of the visit. Therefore, we should create a Vehi cl e object and hold the Fuel i ngSt ati onVi si t objectswithinit.

Test Aut oM | eagelog. j ava Listing 5.1

import junit.framework.*;

import FuelingStationVisit;

import java.util_.Date;

public class TestAutoMileagelLog extends TestCase

public TestAutoMileagelLog(String name)

RUP®/XP Guidelines: Test-first Design and Refactoring

super(name);

public void testCreateVehicle()

Vehicle v = new Vehicle();
assertEquals(0, v.getNumberOfVisits());

Vehicl e. j ava Listing 5.2

public class Vehicle
F{)ublic int getNumberOfVisits(Q)

return O;

Listing 5 shows theinitial step. We have created a new test function namedt est Cr eat eVehi cl e. Thisfunction creates a
Vehi cl e and then makes sure that the number of visits contained within it is zero. The implementation of

get Number O Vi si t s isclearly wrong, but it has the benefit of making the test pass. That allows us to refactor it into a better
solution.

Vehicl e. j ava Listing 6

import java.util_Vector;

public class Vehicle

t private Vector itsVisits = new Vector();
public int getNumberOfVisits()
{ return itsVisits.size();

¥

Again, the tests pass. It should be noted that we are running all of the tests, not just thet est Cr eat eVehi cl e function. This
assures us that our changes haven’'t broken anything that used to work.

Next, we should figure out how to add a visit to a Vehicle. What would the simplest test case look like?

Test Aut oM | eagelog. j ava Listing 7

gublic void testAddvisit()

double fuel 2.0; // 2 gallons.

double cost = 1.87*2; // Price = $1.87 per gallon

int mileage = 1000; // odometer reading.

double delta = 0.0001; //tolerance on floating point equality.

Vehicle v = new Vehicle(Q);
v.addFuelingStationVisit(fuel, cost, mileage);
assertEquals(l, v.getNumberOfVisits());

Notice that we did not create aFuel i ngSt ati onVi si t object inthistest. It looks like the addFuel i ngSt ati onVi si t
method of Vehi cl e must create the Fuel i ngSt ati onVi si t object, and then add it to the list.

RUP®/XP Guidelines: Test-first Design and Refactoring

Vehicl e. j ava Listing 8
public void addFuelingStationVisit(double fuel, double cost, int mileage)

FuelingStationVisit v =
new FuelingStationVisit(new Date(), fuel, cost, mileage);
} itsVisits.add(v);

Again, al of the tests pass.

We should be alittle uncomfortable with the duplicated code in the two functionst est AddVi si t and

t est Cr eat eFuel i ngSt at i onVi si t . Both functions create the same local variables and initialize them to the same values.
We'd like to get rid of this duplication. Therefore, we'll refactor the test program making the local variables into member
variables.

Test Aut oM | eagelog. j ava Listing 9

import junit.framework.*;
import FuelingStationVisit;
import java.util_.Date;

public class TestAutoMileagelLog extends TestCase

private double fuel = 2.0; // 2 gallons.

private double cost = 1.87 * 2; // Price = $1.87 per gallon

private int mileage = 1000; // odometer reading.

private double delta = .0001; //tolerance on floating point equality.

public TestAutoMileagelLog(String name)
{

super(name);

public void testCreateFuelingStationVisit()
Date date = new Date();

FuelingStationVisit v =
new FuelingStationVisit(date, fuel, cost, mileage);
assertEquals(date, v.getDate());
assertEquals(1.87*2, v.getCost(), delta);
assertEquals(2, v.getFuel(), delta);
assertkEquals(1000, v.getMileage()):
assertEquals(1.87, v.getPrice(), delta);
}

public void testCreateVehicle()

Vehicle v = new Vehicle();
assertEquals(0, v.getNumberOfVisits());

public void testAddVisit()

Vehicle v = new Vehicle();
v.addFuelingStationVisit(fuel, cost, mileage);
assertEquals(1l, v.getNumberOfVisits());
¥
}

This particular refactoring has a name. It's called PROMOTE TEMP TO FIELD. You can find alist of similar refactorings and
the procedures for applying them in reference [1] and at www.refactoring.com.

Notice that the existence of the unit tests allowed us to quickly verify that this refactoring had not broken anything. We will
continue to take advantage of this as we refactor and restructure the application. Whenever we do something to the code that
makes us feel uneasy, we can fall back on the tests to make sure everything still works.

RUP®/XP Guidelines: Test-first Design and Refactoring

Having added Fuel i ngSt at i onVi si t objectsto the Vehi cl e, we can now ask the Vehi cl e to produce reports. We write
the test casesfirst, starting with the smplest case.

Test Aut oM | eagelog. | ava Listing 10

F{’Ub' ic void testSingleVisitMileageReport()

Vehicle v = new Vehicle(Q);
v.addFuelingVisit(fuel, cost, mileage);
MileageReport r = v.generateMileageReport();
assertEquals(0,r.getMilesDriven());
assertEquals(fuel,r._getFuelConsumed());
assertEquals(0,r.getMilesPerGallon());
assertEquals(cost,r.getTotalFuelCost());

To write thistest case, we had to think through the issues related to report generation. First, we decided that Vehi cl e should
have a method named gener at eM | eageRepor t . Next, we decided that this function should return an object named
M | eageReport . Finally, we decided that M | eageReport should have several query methods.

The values that these query methods return are quite interesting. A single visit is not enough to calculate miles driven or miles
per gallon. To calculate these values, we need at least two visits. On the other hand, asingle visit is sufficient to calculate fuel
consumption and fuel costs.

Of course, the test case does not compile. Therefore, we have to add the appropriate methods and classes. We first add just
enough code to make it compile, but fail itstests.

Vehi cl e. j ava Listing 11.1

gubl ic MileageReport generateMileageReport()

return new MileageReport();

Test Aut oM | eagelog. | ava Listing 11.2

public void testSingleVisitMileageReport()

Vehicle v = new Vehicle(Q;
v.addFuelingVisit(fuel, cost, mileage);
MileageReport r = v.generateMileageReport();
assertEquals(0,r.getMilesDriven());
assertEquals(fuel,r._getFuelConsumed());
assertEquals(0,r.getMilesPerGallon());
assertEquals(cost,r.getTotalFuelCost());

M | eageReport.java Listing 11.3

public class MileageReport

public int getMilesDriven() {return itsMilesDriven;}

public double getMilesPerGallon() {return itsMilesPerGallon;}
public double getTotalFuelCost() {return itsTotalFuelCost;}
public double getFuelConsumed() {return itsFuelConsumed;}

private int itsMilesDriven;
private double itsMilesPerGallon;
private double itsTotalFuelCost;
private double itsFuelConsumed;

The codein Listing 11 compiles and executes, but the test fails. Now we need to refactor the code so that it passes the test. At
first, we will take the simplest approach possible.

RUP®/XP Guidelines: Test-first Design and Refactoring

Vehicl e. j ava Listing 12.1

public MileageReport generateMileageReport()

MileageReport r = new MileageReport();

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(0);
r.setMilesPerGallon(0);

r.setMilesDriven(0);

r.setTotalFuelCost(v.getCost());
r.setFuelConsumed(v.getFuel));

return r;
}
M | eageReport.java Listing 12.2
public void setMilesPerGallon(double mpg) {itsMilesPerGallon = mpg;}
public void setMilesDriven(int miles) {itsMilesDriven=miles;}

public void setTotalFuelCost(double cost) {itsTotalFuelCost=cost;}
public void setFuelConsumed(double fuel) {itsFuelConsumed=Ffuel;}

We assume that the Vehi cl e hasjust one visit. (Don’t worry; we' |l add other test cases for other conditions later.) We set
the fields of the M | eageReport appropriately, and then return it.

It may seem silly to implement gener at eM | eageReport thisway since we know for sure the implementation is, at best,
incomplete. However, implementing in tiny increments has the benefit that nothing much changes between each compile and
test. If anything goes wrong, we can always go back to the last version and start again. We don’t have to debug.

The codein Listing 12 compiles and passes the tests, but is clearly incomplete. To complete it, we need to think of some other
test cases.

* A Vehiclewith no visits
* A Vehicle with more than one visit

The case where there are no visitsis simple. The test casein Listing 13.1 fails and the code in Listing 13.2 makes it pass
again.

Test Aut oM | eagelog. j ava Listing 13.1

gubl ic void testNoVisitsMileageReport()

Vehicle v = new Vehicle(Q);

MileageReport r = v.generateMileageReport();
assertEquals(0,r.getMilesDriven());
assertEquals(0, r.getFuelConsumed() ,delta);
assertEquals(0,r.getMilesPerGallon(),delta);
asserteEquals(0,r.getTotalFuelCost(),delta);

Vehicle.java Listing 13.2
public MileageReport generateMileageReport()

MileageReport r = new MileageReport();

Ef (itsVisits.size(Q) ==
r.setMilesPerGallon(0);
r.setMilesDriven(0);
r.setTotalFuelCost(0);
r.setFuelConsumed(0);

%Ise
FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(0);
r_.setMilesPerGallon(0);
r.setMilesDriven(0);
r_setTotalFuelCost(v.getCost());
r.setFuelConsumed(v.getFuel());

RUP®/XP Guidelines: Test-first Design and Refactoring

return rj;

Next, we need to consider the test case that deals with many visits.

Test Aut oM | eagelog. j ava Listing 14
public void testMultipleVisitMileageReport()
{

Vehicle v = new Vehicle();
v.addFuelingStationVisit(5, 6.10, 17942);
v.addFuelingStationVisit(9.8, 12.24, 18234);
v._addFuelingStationVisit(8.3, 10.11, 18483);
MileageReport r = v.generateMileageReport();
assertEquals(541, r.getMilesDriven());
asserteEquals(23.1, r.getFuelConsumed(), delta);
assertEquals(23.41991, r.getMilesPerGallon(), delta);
asserteEquals(28.45, r.getTotalFuelCost(), delta);

We have chosen to put three visitsinto the Vehi cl e. We based the cost on roughly $1.20 per gallon, and the mileage on
roughly 30 miles per gallon (mpg). Therefore, we use 9.8 gallonsto travel 292 miles at a cost of $12.24.

Thereisan odd problem here. We based each odometer reading on approximately 30 mpg. However, when we divide 541, the
distance driven, by 23.1, the gallons consumed, we get 23.41991 mpg. Why the discrepancy? Why don’t we get something
close to 30 mpg?

Upon reflection, it becomes clear that fuel consumption is not the sum of all fuel bought in every visit. Fuel is consumed
between visits. The fuel purchased at the first visit should not be considered when cal culating mpg.

Test Aut oM | eagelog. | ava Listing 15

public void testMultipleVisitMileageReport()

Vehicle v = new Vehicle();
v.addFuelingStationVisit(5, 6.10, 17942);
v.addFuelingStationVisit(9.8, 12.24, 18234);
v.addFuelingStationVisit(8.3, 10.11, 18483);
MileageReport r = v._generateMileageReport();
assertEquals(541, r.getMilesDriven());
assertEquals(18.1, r.getFuelConsumed(), delta);
assertEquals(29.88950, r.getMilesPerGallon(), delta);
assertEquals(28.45, r.getTotalFuelCost(), delta);

Thislooks much better. Y ou never know what you'll find when you write tests. One thing if for sure—you are bound to find
more errors when you specify things twice, that is, in tests and in code, than if you just write the code.

Now we're ready to try adding the code that makes the previous test pass.

Vehicle.java Listing 16
public MileageReport generateMileageReport()

MileageReport r = new MileageReport();
if (itsVisits.size() == 0)

-setMilesPerGallon(0);
.setMilesDriven(0);
-setTotalFuelCost(0);
.setFuelConsumed(0);

nlin i lie

glse if (itsVisits.size() == 1)

10

RUP®/XP Guidelines: Test-first Design and Refactoring

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(0);
r_.setMilesPerGallon(0);

r.setMilesDriven(0);

r_.setTotalFuelCost(v.getCost());
r.setFuelConsumed(v.getFuel());

else

{
int firstOdometerReading = 0;
int lastOdometerReading = O;
double totalCost = 0;
double fuelConsumption = 0;

for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
if (i==0)

FfirstOdometerReading = v.getMileage();
fuelConsumption -= v.getFuel();

1

if (i==itsVisits.size()-1) lastOdometerReading = v.getMileage();
totalCost += v.getCost();

fuelConsumption += v.getFuel();

}

int distance = lastOdometerReading - firstOdometerReading;
r.setMilesPerGal lon(distance/fuelConsumption);
r.setMilesDriven(distance);

r.setTotalFuelCost(totalCost);
r.setFuelConsumed(fuelConsumption);

return rj;

}

Thiscodeisugly with all of its special cases. We need to refactor the special cases out. In fact, the third case is general
enough as it stands. We should be able to eliminate the other two cases.

When we do this, thet est Si ngl eVi si t M | eageReport test casefails. The failure is because the single visit case was
including the fuel purchased in the first, and only, visit. As we discovered above, fuel consumption must be zero if thereis
only one visit. Therefore, we can fix the test case and the code.

Vehi cl e.java Listing 17

public MileageReport generateMileageReport()
MileageReport r = new MileageReport();

int firstOdometerReading = 0;
int lastOdometerReading = O;
double totalCost = 0;

double fuelConsumption = 0;

for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
if (i==0)

firstOdometerReading = v.getMileage();
fuelConsumption -= v._.getFuel();

if (i==itsVisits.size()-1) lastOdometerReading = v.getMileage();
totalCost += v.getCost();
fuelConsumption += v.getFuel();

}

int distance = lastOdometerReading - firstOdometerReading;
r.setMilesPerGal lon(distance/fuelConsumption);
r.setMilesDriven(distance);

11

RUP®/XP Guidelines: Test-first Design and Refactoring

r.setTotalFuelCost(totalCost);
r.setFuelConsumed(fuelConsumption);

return r;

Thisfunction islong. We need to shorten it and clean it up abit. We'll begin by moving bits of the code around so that they
can be moved into separate functions.

Vehicle.java Listing 18

public MileageReport generateMileageReport()
MileageReport r = new MileageReport();

int distance = 0;

double totalCost = 0;
double fuelConsumption = O;
doublle firstFuel = 0;
double mpg = O;

‘i{f (itsVisits.size() > 0)

FuelingStationVisit firstVisit =
(FuelingStationVisit)itsVisits.get(0);

FuelingStationVisit lastVisit =
(FuelingStationVisit)itsVisits.get(itsVisits.size()-1);

int FirstOdometerReading = FirstVisit.getMileage();

int lastOdometerReading = lastVisit.getMileage();

distance = lastOdometerReading-firstOdometerReading;

FirstFuel = firstVisit.getFuel(;

for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
totalCost += v.getCost();
fuelConsumption += v.getFuel();

}

fuelConsumption -= firstFuel;
if (fuelConsumption > 0)
mpg = distance/fuelConsumption;

r.setMilesPerGallon(mpg);
r.setMilesDriven(distance);
r.setTotalFuelCost(totalCost);
r.setFuelConsumed(fuelConsumption);

return r;

Listing 18 is an intermediate step. It actually took four or five much smaller steps to get to this point. At each of those smaller
steps, we were able to run the tests to ensure that we hadn’t broken anything. The goal of those refactorings was to somehow
get the code easier to split apart, but we didn’'t have afirm notion of how to do this. So, these first refactorings were almost
random. They didn’t take much time and the tests ensured that nothing was broken.

Having reached this point with the tests still running, we can see away to improve things. We'll start by splitting the loop? in
two.

2 See SpLIT Loop from www.refactoring.com.

12

RUP®/XP Guidelines: Test-first Design and Refactoring

Vehicl e.java Listing 19

if (itsVisits.size() > 0)

FuelingStationVisit FirstVisit =
(FuelingStationVisit)itsVisits.get(0);

FuelingStationVisit lastVisit =
(FuelingStationVisit)itsVisits.get(itsVisits.size()-1);

int firstOdometerReading = FirstVisit.getMileage();

int lastOdometerReading = lastVisit.getMileage();

distance = lastOdometerReading-firstOdometerReading;

firstFuel = firstVisit.getFuel();

for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
fuelConsumption += v.getFuel();

for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
totalCost += v.getCost();
}

fuelConsumption -= firstFuel;
if (fuelConsumption > 0)
mpg = distance/fuelConsumption;

The tests still run. Next, we' Il extract each loop into its own private method.

Vehi cl e.java Listing 20

public MileageReport generateMileageReport()
{

MileageReport r = new MileageReport();

int distance = 0;

double totalCost = 0;
double fuelConsumption = 0;
double firstFuel = 0;
double mpg = 0;

if (itsVisits.size() > 0)
{
FuelingStationVisit firstVisit =
(FuelingStationVisit)itsVisits.get(0);
FuelingStationVisit lastVisit =
(FuelingStationVisit)itsVisits_get(itsVisits.size()-1);
int firstOdometerReading = FfirstVisit.getMileage();
int lastOdometerReading = lastVisit.getMileage();
distance = lastOdometerReading-firstOdometerReading;
FirstFuel = firstVisit._getFuel();

fuelConsumption = calculateFuelConsumption(Q);
totalCost = calculateTotalCost();

fuelConsumption -= firstFuel;
if (fuelConsumption > 0)
mpg = distance/fuelConsumption;

}

r_setMilesPerGallon(mpg) ;
r.setMilesDriven(distance);
r_setTotalFuelCost(totalCost);

3 See EXTRACT METHOD from www.refactoring.com.

13

RUP®/XP Guidelines: Test-first Design and Refactoring

r .setFuelConsumed(fuelConsumption);

return rj;

rivate double calculateTotalCost()

T W

double totalCost = O;
for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
totalCost += v.getCost();

return totalCost;

rivate double calculateFuelConsumption()

~T W

double fuelConsumption = 0;;
for (int i=0; i<itsVisits.size(Q); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
fuelConsumption += v.getFuel();

}
return fuelConsumption;

Thetests still run. Next, we'll move the specia cases for fuel consumption into thecal cul at eFuel Consunpt i on method.

Vehicl e.java Listing 21
public MileageReport generateMileageReport()

if (itsVisits.size() > 0)

FuelingStationVisit FirstVisit =
(FuelingStationVisit)itsVisits.get(0);

FuelingStationVisit lastVisit =
(FuelingStationVisit)itsVisits.get(itsVisits.size()-1);

int firstOdometerReading = FirstVisit.getMileage();

int lastOdometerReading = lastVisit.getMileage();

distance = lastOdometerReading-firstOdometerReading;

fuelConsumption = calculateFuelConsumption();
totalCost = calculateTotalCost();

if (fuelConsumption > 0)
mpg = distance/fuelConsumption;

}
return r;
}
private double calculateTotalCost()
{
double totalCost = 0;
for (int i=0; i<itsVisits.size(); i++)
FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
totalCost += v.getCost();
return totalCost;
}

private double calculateFuelConsumption()

14

RUP®/XP Guidelines: Test-first Design and Refactoring

{
double fuelConsumption = 0;
if (itsVisits.size() > 0)
for (int i=1; i<itsVisits.size(); i++)
FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
fuelConsumption += v.getFuel();
3
return fuelConsumption;
}

Thetests still run. Note that cal cul at eFuel Consunpt i on can now take the expedient of starting to sum fuel consumption
with the second visit. Next, we can extract the function to calculate distance.

Vehicle.java Listing 22
public MileageReport generateMileageReport()

MileageReport r = new MileageReport();

int distance = 0;

double totalCost = 0;
double fuelConsumption = 0;
double firstFuel = 0;
double mpg = 0;

if (itsVisits.size() > 0)

distance = calculateDistance();
fuelConsumption = calculateFuelConsumption();
totalCost = calculateTotalCost();

if (fuelConsumption > 0)
mpg = distance/fuelConsumption;
}
r.setMilesPerGallon(mpg) ;
r.setMilesDriven(distance);
r.setTotalFuelCost(totalCost);
r.setFuelConsumed(fuelConsumption);

return r;

rivate int calculateDistance()

AT W

int distance = 0;
if (itsVisits.size() > 0)

FuelingStationVisit firstVisit =
(FuelingStationVisit)itsVisits.get(0);

FuelingStationVisit lastVisit =
(FuelingStationVisit)itsVisits.get(itsVisits.size()-1);

int FirstOdometerReading = FirstVisit.getMileage(Q);

int lastOdometerReading = lastVisit.getMileage();

distance = lastOdometerReading-firstOdometerReading;

return distance;

Thetests still run. Now we can remove the conditional in the main function, and clean up afew odds and ends.

15

RUP®/XP Guidelines: Test-first Design and Refactoring

Vehicl e.java Listing 23
public MileageReport generateMileageReport()

int distance = calculateDistance();

double fuelConsumption = calculateFuelConsumption();
double totalCost = calculateTotalCost();

double mpg = 0O;

if (fuelConsumption > 0)
mpg = distance/fuelConsumption;

MileageReport r = new MileageReport();
r.setMilesPerGallon(mpg) ;
-setMilesDriven(distance);
.setTotalFuelCost(totalCost);
-setFuelConsumed(fuelConsumption);

S==

return r;

}

private int calculateDistance()

{
int distance = 0;
if (itsVisits.size() > 1)

FuelingStationVisit FirstVisit =
(FuelingStationVisit)itsVisits.get(0);

FuelingStationVisit lastVisit =
(FuelingStationVisit)itsVisits.get(itsVisits.size()-1);

int firstOdometerReading = FirstVisit.getMileage();

int lastOdometerReading = lastVisit.getMileage();

distance = lastOdometerReading-firstOdometerReading;

return distance;

}

private double calculateTotalCost()

{
double totalCost = 0O;
for (int i=0; i<itsVisits.size(); i++)

FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
totalCost += v.getCost();

return totalCost;

}
private double calculateFuelConsumption()

double fuelConsumption = 0;
if (itsvVisits.size() > 1)

for (int i=1; i<itsVisits.size(); i++)
FuelingStationVisit v = (FuelingStationVisit)itsVisits.get(i);
fuelConsumption += v.getFuel();

}

return fuelConsumption;

The tests still run.

Thisis pretty good. Each function is self-contained and well isolated from the others. The main function is small and easy to
understand.

Y ou might argue that this has made the program more complicated. While it has certainly increased the function count and the
line count, it has also partitioned the program nicely. Each function is easy to understand.

16

RUP®/XP Guidelines: Test-first Design and Refactoring

Notice that the case analysis from Listing 16 has returned, but is now associated with the specific calculation functions. This
isfar better than Listing 17 where the removal of the case analysis just worked by accident.

Some might complain that this code is needlessly slow. This may be true, but we do not appear to require speed. When speed
becomes a requirement, and when the current execution fails that requirement, then we can do something about it. Until that
time, we'll be happy with the clarity and separation of concerns shown in Listing 23.

Conclusion

Though this paper has demonstrated the techniques of refactoring in the presence of test-first design; itsreal purpose was to
convey an attitude of programming. A program is not done when it works. Indeed, making it work is the easy part. A program
is done when it works, and when it is as simple and clean as possible.

This paper claims that a good way to achieve this desirable outcome is to:

1. Design the program by writing test cases. After each test case is written, write the code that passes that test case.
Accumulate all of the tests and make it easy to run them repeatedly.

2. Once apart of the program works, refactor that part until it's clean. Do the refactoring by making a sequence of tiny
changes to the code and by running the tests after each change. Thiswill give you the confidence that your changes
aren’t breaking anything, and the courage to continue making change after change until the codeis as clean and clear
as you can makeit.

References

[1] Refactoring, Martin Fowler, Addison Wesley, 1999W

[2] eXtreme Programming eXplained, Kent Beck, Addison Wesley, 2000

17

Rationarl

the e-development company™

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900

Fax: 408-863-4120
E-mail: info@rational.com
Web: www.rational.com

For International Offices. www.rational.com/worldwide

Rational, the Rational 1ogo, Rational the e-development company, and Rational Unified Process are registered trademarks of
Rational Software Corporation in the United States and in other countries. Microsoft, Microsoft Windows, Microsoft Visual
Studio, Microsoft Word, Microsoft Project, Visual C++, and Visual Basic are trademarks or registered trademarks of
Microsoft Corporation. All other names used for identification purposes only and are trademarks or registered trademarks of
their respective companies. ALL RIGHTS RESERVED. Madein the U.S.A.

0 Copyright 2000 Rational Software Corporation.
Subject to change without notice.

